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Few-Shot Learning (FSL)

We are given

• a base class set Cbase consisting of nbase base classes: each base class has
su�cient labeled samples.

• a novel class set Cnovel consisting of nnovel novel classes: each novel class has only
a few labeled samples (e.g., less than 5 samples).

How to learn a good classifier for the novel classes by transferring the knowledge from
base classes?
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Meta-Learning Approach

Meta-learning is a common approach for the FSL. It involves two stages:1

• Meta-training: In each episode, a
meta task is constructed by
sampling a small training set
(support set) and a small test set
(query set) from the whole base
class dataset, which is then used
to update the model.

• Meta-testing: The learned model
is used to recognize samples from
novel classes.

1Image credit: Yong Wang et al.
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https://arxiv.org/abs/1807.02872


Metric-Based Meta-Learning

Metric-based meta-learning assumes that there exists an embedding space in which
samples cluster around a single representation (called prototype) for each class, and
these prototypes are then used as references to infer labels of test samples.2

2Image credit: Tiago Ramalho
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https://tmramalho.github.io/science/2019/12/07/towards-improved-generalization-in-few-shot-classification


Training Loss of Metric-Based Meta-Learning

During a meta-training episode, all samples of the meta task are embedded into the
embedding space by a feature extractor F . Then, we generate prototypes
r1, r2, · · · , rnt by using the samples from support set S . After that, we measure the
similarity between every query image x and the prototype rk , i.e., D(F(x), rk).

Finally, the classification loss can be formulated as:

Lcls = � 1

|Q|
X

(x ,y)2Q

log
eD(F(x),ry )

P
k2Ct

eD(F(x),rk )
, (1)

where Ct denotes the class set of the current meta
task.
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Key Idea: Adding Margins in the Embedding Space

• To better separate samples from di↵erent
classes (especially for similar classes), we
introduce the adaptive margin in the
embedding space.

• Key Idea: the margin between similar
classes should be larger than the one
between dissimilar classes.
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Naive Additive Margin Loss

We first propose a naive additive margin loss (NAML), which can be formulated as:

Lna = � 1

|Q|
X

(x,y)2Q

log
eD(F(x),ry )

eD(F(x),ry ) +
P

k2Ct\{y}
eD(F(x),rk )+m

. (2)

• The above naive additive margin loss assumes all classes should be equally far
away from each other.

• It forces the embedding module F to extract more separable visual features for
samples from di↵erent classes, which benefits the FSL.

• The fixed additive margin may lead to mistakes on test samples of similar classes,
especially for the FSL where very limited number of labelled samples are provided
in the novel classes.
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Adaptive Margin Loss

To better separate similar classes in the feature embedding space, we design the
margin adaptively.

L = � 1

|Q|
X

(x ,y)2Q

log
eD(F(x),ry )

eD(F(x),ry ) +
P

k2Ct\{y}
eD(F(x),rk ))+my,k

. (3)

where margin my ,k is generated according to the semantic similarity between y and k .

To measure the semantic similarity between two classes in a semantic space, we

• feed class names (e.g., dog) into a pre-trained word embedding model (e.g.,
Glove), and get the semantic word vectors.

• compute the similarity (e.g., cosine similarity) between word vectors.
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The Overview of Our Proposed Approach
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Class-Relevant Additive Margin

A simple way to generate the adaptive margin can be

mcr
i,j := ↵ · sim(ei , ej) + �, (4)

where sim(·) denotes a metric to measure the semantic similarity between classes, and
↵ and � are learnable parameters.

• In the experiment, we observe that the learned coe�cient ↵ is positive.

• Thus, our class-relevant margin loss can make the samples from similar classes to
be more separable in the embedding space, which helps better recognize test class
samples.
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Task-Relevant Additive Margin

We also design the margin in a more careful way, which considers the semantic context
among all classes in a meta-training task.

{mtr
y ,k}k2Ct\{y} = G

�
{sim(ey , ek)}k2Ct\{y}

�
(5)
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Performance on the miniImageNet Dataset

Model Backbone Type
Test Accuracy

5-way 1-shot 5-way 5-shot

Matching Networks [17] 4Conv Metric 43.56 ± 0.84 55.31 ± 0.73
Prototypical Network [14] 4Conv Metric 49.42 ± 0.78 68.20 ± 0.66
Relation Networks [16] 4Conv Metric 50.44 ± 0.82 65.32 ± 0.70
GCR [8] 4Conv Metric 53.21 ± 0.40 72.34 ± 0.32
Memory Matching Network [2] 4Conv Metric 53.37 ± 0.48 66.97 ± 0.35
Dynamic FSL [4] 4Conv Metric 56.20 ± 0.86 73.00 ± 0.64
Prototypical Network [14] ResNet12 Metric 56.52 ± 0.45 74.28 ± 0.20
TADAM [11] ResNet12 Metric 58.50 ± 0.30 76.70 ± 0.38
DC [9] ResNet12 Metric 62.53 ± 0.19 78.95 ± 0.13
TapNet [20] ResNet12 Metric 61.65 ± 0.15 76.36 ± 0.10
ECMSFMT [13] ResNet12 Metric 59.00 77.46
AM3 (Prototypical Network) [19] ResNet12 Metric 65.21±0.49 75.20 ± 0.36

MAML [3] 4Conv Gradient 48.70 ± 1.84 63.11 ± 0.92
MAML++ [1] 4Conv Gradient 52.15 ± 0.26 68.32 ± 0.44
iMAML [12] 4Conv Gradient 49.30 ± 1.88 -
LCC [10] 4Conv Gradient 54.6 ± 0.4 71.1 ± 0.4
CAML [6] ResNet12 Gradient 59.23 ± 0.99 72.35 ± 0.18
MTL [15] ResNet12 Gradient 61.20 ± 1.80 75.50 ± 0.80
MetaOptNet-SVM [7] ResNet12 Gradient 62.64 ± 0.61 78.63 ± 0.46

Prototypical Network + TRAML (OURS) ResNet12 Metric 60.31 ± 0.48 77.94 ± 0.57
AM3 (Prototypical Network) + TRAML (OURS) ResNet12 Metric 67.10 ± 0.52 79.54 ± 0.60
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Ablation Study

Model (AM3 [19] as the backbone)
Test Accuracy

5-way 1-shot 5-way 5-shot

Original Classification Loss 65.21 ± 0.49 75.20 ± 0.36
Naive Additive Margin Loss 65.42 ± 0.25 75.48 ± 0.34
Class-Relevant Additive Margin Loss 66.36 ± 0.57 77.21 ± 0.48
Task-Relevant Additive Margin Loss 67.10 ± 0.52 79.54 ± 0.60

• Simply adding a fixed margin has limited e↵ectiveness in FSL.

• Class-relevant additive margin is shown to benefit the embedding learning for FSL.

• By considering the semantic context among classes in a meta-training task,
task-relevant additive margin yields the best results.
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Generalized Few-Shot Learning

We also test our approach in a more challenging yet practical generalized FSL setting,
where the label space of test data is extended to both base and novel classes.

Model
Novel All

ns=1 2 5 10 20 ns=1 2 5 10 20

Logistic regression (from [18]) 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9
Logistic regression w/H (from [5]) 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9
Prototypical Network [14] (from [18]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6
Matching Networks [17] (from [18]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5
Squared Gradient Magnitude w/H [5] - - - - - 54.3 62.1 71.3 75.8 78.1
Batch Squared Gradient Magnitude [5] - - - - - 49.3 60.5 71.4 75.8 78.5
Prototype Matching Nets [18] 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1
Prototype Matching Nets w/H [18] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5
Dynamic FSL [4] 46.0 57.5 69.2 74.8 78.1 58.2 65.2 72.2 76.5 78.7

Dynamic FSL + TRAML (OURS) 48.1 59.2 70.3 76.4 79.4 59.2 66.2 73.6 77.3 80.2

Table: Comparative results for generalized FSL on the ImageNet2012 dataset. The top-5
accuracies (%) on the novel classes and on all classes are used as the evaluation metrics for this
dataset.
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Conclusion

• Our method introduces adaptive margin in the embedding space, which can
e↵ectively enhance the discriminative power of embedding space.

• We develop a class-relevant additive margin loss, where semantic similarity
between each pair of classes is considered to separate samples in the feature
embedding space from similar classes.

• Further, we incorporate the semantic context among all classes in a sampled
training task and develop a task-relevant additive margin loss to better distinguish
samples from di↵erent classes.

• Our method can be applied to most scenarios for clustering in the feature
embedding space, e.g., standard FSL, generalized FSL, etc. Extensive experiments
demonstrate that our method can boost the performance of current metric-based
meta-learning approaches.
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Thank you!

We are looking for research interns (Contact me for details).
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